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Abstract

A two-dimensional, semi-infinite analytical solution of the transient temperature and the
thermal stress due to heating from the bending magnet beam missteering in the APS has been
developed.  In order to solve the thermal stress analytically, an effective absorption function is
introduced, and the transient temperature can be written as a function of the exponential inte-
grals.  At the origin where the peak power is applied, the effective stress is found to be the maxi-
mum and is undergoing simple compression along the longitudinal direction.  The result utilizing
finite element method (FEM) applied to the chamber cross section is also presented and agrees
fairly well with the current analytical solution during the early small time scale.



Nomenclature

B Magnet field of the bending magnet

D Temperature diffusivity

E Positron beam energy

G* Green function

I Beam current

K Thermal conductivity

Q Heat generation

T Temperature

To Reference temperature

Y Young’s modulus

� Displacement potential

� Thermal expansion coefficient

�t Effective absorption coefficient

� Incident angle

� Shear modulus

� Poisson ratio

� Airy stress function

� Vertical angle

�o Vertical inclined angle

ρ Material density

�ij Stress tensor component

��ij Deviatoric stress tensor component

�eff. Effective stress

c Specific heat

l Distance from the source

q Bending magnet beam power

qo Peak power of the bending magnet

ro Standard deviation

t Time

x,y,z Cartisian coordinate



1     Introduction

APS (Advanced Photon Source) synchrotron beam orbit missteering is known to be an important
event due to the extreme thermal loading and subsequent high thermal stress built up in the
vacuum chamber.  The information obtained during the transient activities directly affects the
design criterion for the beam abort and interlock systems.  Because the bending magnet beam
missteering generates a very localized temperature gradient that will result in high thermal stress
in the chamber, thermomechanical analysis of the beam missteering is necessary to obtain the
parametric expressions for the temperature and stress in terms of the beam power and the
associated footprint.

Because the bending magnet radiation has a fan-like geometry in the horizontal direction
and a gaussian-like distribution in the vertical direction, the footprint heating on the chamber
surface spreads out in an extensively wider area along the longitudinal direction than along the
transverse direction, hence, a two-dimensional analysis on the transverse plane is reasonably ad-
equate.  Since the response time of the beam position monitor (BPM) is on the order of a few
milliseconds, the cooling effect due to remote water convection is limited.  In addition, in view
of the localized power input, it is expected that severe thermal and thermomechanical activities
will take place in a small region; therefore, semi-infinite plane is used for the current analysis.  A
nonhomogeneous energy equation is utilized for the transient temperature analysis.  Inertia ef-
fects due to the heating are assumed to be negligible; hence, quasi-static thermoelastic plane
strain condition is employed.  In our analysis, all the material properties are independent of tem-
perature and time.

2     Bending Magnet Power Distribution

The bending magnet power distribution q is expressed as [4]

q � 5.425E4BI
l2 F(��) � 5.425E4BI
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where � is the vertical angle; � = 1957E; and e, b, i, and l denote positron beam energy,
magnetic field of the bending magnet, the beam current, and the distance from the source,
respectively.  The angular function f(��) can be approximated as gaussian distribution [5]
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Fig. 1 shows the comparisons of F(��) using Eqs. (1) and (2).  Eq. (2) is recast as

F���� � f(x)� exp �– 1
2
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�.
(3)

For convenience, coordinate x is the vertical direction, and y is the horizontal direction.  Also, in
Eq. (3) the approximation � � x/l has been used.  Note that the standard deviation ro of the
bending magnet becomes

ro�
0.608l
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,
(4)



Eq. (1) can be rewritten as
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l2 exp �– 1

2
�
1957Ex
0.608 l
�

2

�.
(5)

If the bending magnet is vertically missteered, then Eq. (5) becomes
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where � is the incident angle and  �o  is  the  vertical  angle.  The  peak  power  qo and  the
corresponding  standard  deviation ro are, respectively,
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If the beam is horizontally missteered, Eq. (5) yields

q � 5.425E4BI sin �
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and
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3     The Temperature Field

As shown in Fig. 2, consider a two-dimensional semi-infinite plane (y > 0, -� < x � �) in
which the surface y = 0 is assumed to be insulated.  A gaussian-type of heat source is simulated
for the bending magnet where the peak power is located at the origin.  The heat equation is given
as
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�

�
2t
�y2
��

Q
ρc�

�T
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(10)

where D is the diffusivity defined as and K/ρc, and K, ρ, and c denote conductivity, density, and
specific heat, respectively.  The surface represents the inner surface of the storage ring chamber
and is assumed to be insulated.  Thus, the boundary condition reads
�T
�y � 0 on y� 0.

(11)

From Eq. (2), the power distribution of the bending magnet is expressed as

q� qo exp �– 1
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When the bending magnet heats the chamber surface, the heat generation term in Eq. (10) is
rewritten as



Q� q�(y)� qo exp �– 1
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where �(y) is the delta function defined as

�(y)� �
1 when y� 0,
0 elsewhere. (14)

Utilizing the green function solution [2], we found that the solution satisfies  Eqs.  (10)
and (11), and, with the surface heating formulation (from Eq. (13)), reads
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where To is  the reference temperature.  After some algebra, Eq. (15) can be written as
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where
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Observing the solution in Eq. (16), we see that the coefficients associated with x and y in the
exponential function are different, which will result in complexity while determining the thermal
stress.  Therefore, in order to be able to solve for the thermal stress, we assume that the material
along the y axis is also subjected to the same distributed heat as is the material along the surface
(x axis), but an “effective absorption coefficient” �t is introduced to accommodate the maximum
temperature (in Eq. (16)).1 Therefore, the heat generation term is assumed to be
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1Although Choi [3] also assumed that the absorption function can be expressed
as an exponential function of the depth, the absorption function used here is a fictitious one and
requires further verifications.



Replacing Q in Eq. (15) by the expression from Eq. (18), we found
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where r2 =  x2  + y2.  Further  calculation yields
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where En represents exponential integral of integer order n which is defined as [1]
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It is easy to find that the maximum temperatures in both Eqs. (16) and (20) are located at the
origin.  Letting x = 0 and y = 0 and carrying out the integration in Eq. (16), the maximum
temperature is found to be
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Similarly, the maximum temperature in Eq. (20) is
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To make the maximum temperature in Eq. (23) identical to that in Eq. (22), �t must satisfy
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4     The Stress Field

The thermal stress is divided into two parts: (1) the stress field (
ij) due to the temperature
change in the infinite plane, and (2) the extra stress field 
ij, generated to satisfy the boundary

conditions.  To solve the stress 
ij, we introduce a displacement potential �, which satisfies
Poisson’s equation [6]

�

2�� �,kk � mo(T–To), (25)

where  �2 is the Laplacian operator and mo is defined as
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where �, Y, and � are the thermal expansion, Young’s modulus, and Poisson’s ratio, respectively.
The corresponding stress components 
ij, can be expressed as


ij � 2
��,ij – �,kk
�,

(27)

where 
 represents the shear modulus.  Since the temperature distribution in Eq. (20) is only
function of r, substituting Eq. (20) into Eq. (25) and writing the Laplacian operator in polar
coordinates, we have
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Direct integrating yields
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where co  is the integrating constant and can be determined as follows: when r � 0, E2(r) has an
order of O(0); hence, the order of the first two terms on the right hand side of Eq. (29) is O(1/r).
Also, because the derivative ��/�r has the same order of displacements, it has to be finite as r �
0, and the only possibility is when
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Further  integrating in Eq. (29) yields
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where Ei(z) is the exponential integral function and can be written as

Ei(z) � �o� log(–z)��
�

n�1

zn

nn!
, z � 0,
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whereas �o is Euler constant = .5772156649....  For convenience, the integrating constant
c1 in Eq.  (31)  is  assumed  to  be  zero.

Substituting Eq. (31) into Eq. (27) and utilizing the relation [1]

En�1(z)� 1
n (exp(–z)–zEn(z)), n  N, (33)



we finally have
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Note that all the stress components 
ij remain finite as r � 0. From Eq. (34), it is easy to find
that, on the surface y = 0, the stress component 
xy satisfies the traction-free boundary condition
but the stress normal to the surface is different from zero :
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An extra stress field 
ij is introduced in order to satisfy the traction free boundary condition on
the surface, that is,
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An Airy stress function � satisfying the biharmonic equation can be expressed as
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where A and B are constants and are determined by substituting Eq. (38) into  Eq. (36).
The result gives
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Substituting Eqs. (37) and (39) into Eq.(38) and after some rearrangements, we have
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The integrals I and II are to be solved by numerical integration.   After the stress field 
ij is

completed, the total stress components are determined by summing up two stress fields 
ij and

ij in Eqs. (34) and (40), respectively.  On the surface y = 0, the only non-vanished in-plane

stress component 
xx is expressed as
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5     Finite Element Analysis

Fig. 3 shows the dimensioning plot of the storage ring chamber cross section in APS.  The
storage ring is made of 6063 - T5 aluminum.  Several bending magnet beam missteering studies
have been analyzed by using finite element method.  One of these was chosen for the
verification.  In this missteering case, the bending magnet beam power is assumed heating the
edge of the positron chamber in the curved sections (S2 or S4) by bending magnet Ml or M2.
The chamber cross section is discretized by isoparametric quadrilateral element.  The distance
from the source point is approximately 70 inches.  As shown in Fig. 4, convection water cooling
is carried out by three water channels.  The convection coefficient h = 0.4 W/cm2 °C. Air cooling
is applied on the outer boundary, whereas the inner chamber surface is assumed to be insulated.
The reference temperature and the initial temperature is 34 °C.  Table 1 lists the parameters
employed in the model.  The discretization is constructed by ALGOR code, whereas the
calculation is done by the ANSYS finite element package.



6     Results and Discussions

From Eq. (18) it is apparent that heat is generated inside the material, but if the maximum
temperature is adjusted by introducing an effective absorption coefficient, the temperature
difference between Eq. (16) and Eq. (20) along x = 0 is expected to have a larger discrepancy.
Fig. 5 illustrates the temperature plot using heat generation formulation (Eq. (20), long dashed
lines) and surface heating formulation (Eq. (16), dashed lines). It is found that, before t = 1
second, the maximum temperature difference between two formulations is less than 10 °C,
which reveals that the use of the heat generation model is adequate for the current analysis.

Fig. 6 shows the temperature distributions along the heating surface at different time
frames.  The heat-affected zone in the first two time steps (0.001 and 0.01 seconds) is limited to
within 0.1 inch.  The small standard deviation ro steepens the temperature gradients within 0.02
inch.  As time increases, the temperature increases monotonically.

It is interesting to note that from Eq. (42), as r � 0, not only 
yy and �xy, but also �xx va-

nishes.  The reason being that, in Eq. (40) as y � 0, the  additional normal stress component 
xx
–

approaches –
yy.  Because the stress 
yy and 
xx tend to the same limit as x and  y approach zero
(Eq. (34)), the total stress 
xx = 
xx + 
xx =  
xy - 
yy r � 0 as r�0. Therefore, high compres-
sive normal stress �xx  is observed away from the origin instead of at the origin where the maxi-
mum temperature is located.  Fig. 8 shows the three-dimensional plot of the stress component
�xx.

For plane strain conditions, the off-plane strain components vanish 	iz = 0  (i = x, y, z),
and the stress component 
zz becomes
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As was described above, because the in-plane stress components are all  zero  as  r � 0, from
Eq. (43), only the off-plane stress 
zz is different from zero and it yields
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Therefore, we see that the stress field  at  the  origin behaves as uniaxial  compression.  It is also
worthwhile to mention that the principal planes are along the x and y axis.  The effective stress,
defined as
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where �ij  is the Kronecker delta.  Due to the fact that the  effective  stress  cannot  be  larger
than �Y(T-To)  if the material is subjected to  only  thermal  loading,  we  can  conclude  that the
maximum effective stress takes place at the origin and the magnitude is
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Fig. 7 shows the effective stress �eff .  profile along the heating surface.  It is found that even
though the heat-affected zone at the early stage (0.001 and 0.01 seconds) is less than 0.1 inch
(Fig. 6), the area of the nonzero effective stress is much wider due to the thermal expansion of
the material.  The heated material receives compressive stress while the adjacent unheated
material is subjected to tensile stress.

Fig. 9 illustrates the transient temperature at the origin using both the semi-infinite ana-
lytical solution and the finite element analysis.  The two approaches agree fairly well with each
other before t = 0.016 second.  Although in the finite element model, water convection is sup-
plied on three channels and steady state will be reached later, the associated steady-state temper-
ature is found to be higher than that found by the semi-infinite model within a reasonable time
interval.  The reason being that in the semi-infinite model, the material absorbs much more heat
than does finite material.  Theoretically, even though the temperature of the semi-infinite model
will diverge as the heating time tends to infinite (Eq. 22, for example), the relation between the
heating time t and the temperature are in log scale, whereas the temperature in the finite domain
with cooling boundary conditions is on the order of exp(-�2t2) , (where � is the associated eigen-
value depending on the boundary conditions), which indicates that the time derivative of the
temperature in the semi-infinite domain is much smaller than that in finite domain.

The comparison of the effective stress �eff. at the origin using the semi-infinite analytical
solution and the finite element analysis is shown in Fig. 10.  It is found that by using the semi-in-
finite solution the effective stress is higher than that found using the finite element model.  This
is because the bending magnet heating takes places near the wedge apex where it is less
constrained than on the semi-infinite half plane.



Table 1:    Material   Properties  and  Parameters

B 0.6 [T]

E 7.0 [GeV]

I 300 [mA]

K 167.4 [W/m°K]

To 34 [°C]

Y 1.1 x 107 [Psi]

� 2.25 x 10-5 [cm/cm°K]

� 46 [mR]

�o 0.5235 [R]

� 0.33

ρ 2.7 [g/cm3]

c 984 [J/Kg°C]

l 70.87 [inches]
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Figure 1    Angular Function F(��) (chain-dash line) vs. Gaussian Distribution Function
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Figure 2     Semi-Infinite Plane Heated by Gaussian Heat Input
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